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ABSTRACT

The influence of random phase errors on the angular resolution of

a focused synthetic aperture radar system is treated. The principal

measure of performance has been taken as the mean envelope power

at the system output. This system output power is evaluated exactly,

although not in closed form, based on the following reasonable

assumptions: (1) the real beam pattern is Gaussian; (Z) the random

phase error is essentially a geometry independent ergodic process

with a Gaussian amplitude distribution and zero mean; and (3) the

random phase error has a Gaussian co.rrelation function.

The curves presented in this report can be used to estimate

expected system power response, expected system resolution, and

effective aperture length beyond which, inthe presence of phase error,

little gain in resolution is expected.

It was found that multiple sources of error with different correlation

intervals make explicit solution of the integral equation for system

power response practicallyimpossible. Inthis situation, a reasonable

approach is to evaluate the system power response separately for 'ach

error. If one of the errors is clearly dominant, it maybe regarded as

bounding achievable performance.
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INTRODUCTION

Previous analyses regarding the effects of random phase errors on

focused synthetic aperture radar systems 1. have been found deficient

for purposes of radar resolution determination and system design.

Reference I presents an approximate (Monte Carlo) analysis of the

expected system transfer function for various conditions of mean-square

phase error and phase-error correlation length for an arbitrarily assumed

exponential correlation function. Certain shortcomings exist in the analysis.

First, the range of parameters is restricted to investigation of system

response in the vicinity of the 3-db beamwidth. Second, many calcula-

tions are made by approximate analyses which the author finds difficult

to relate to system resolution, e. g., beam canting, main lobe to sidelobe

power, and 3-db beamwidth.

This author maintains that the 3-db beamwidth has questionable signifi-

cance in resolution of a radar system. When expected bearnwidth is used to
3

estimate resolution, then beamwidth at the limits of system dynamic range

(Z0 to 30 db) is the significant parameter. In other words, when receiving

a strong target at maximum system input, the main question is how close a

target of minimum system input can be placed and its presence still be

resolved. This latter definition of resolution is obviously the most stringent

because, as will be shown later, the 20- to 30-db beamwidth expands very

rapidly with phase errors, while the 3-db beamwidth is comparatively

insensitive to these errors.
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The high sensitivity of the Z0- to 30-db beamwidth to phase errors allows

fairly accurate estimates of system resolution from the expected power

output alone. Considering the accuracy of phase-error data, use of statis-

tical decision theory is unnecessary for all practical purposes. This is

fortunate because an exact analysis of the present highly nonlinear problem

using statistical decision theory would be a formidable undertaking, to say

the least.

Reference 2 carries out what is essentially an exact analysis of a

purported measure of beamwidth: the radius of gyration of the system out-

put. It is clear, however, for a commonly considered system response, the

sin x/x2 function,4 that no radius of gyration exists that is even remotely

connected with the first lobewidth of the system output. A measure of

resolution as sensitive as this to amplitude weighting of the received data

is clearly dangerous to apply and cannot give a true measure of system

resolution. The criterion used in Ref. 2 is consequently discarded, and

its application to synthetic aperture radar resolution is considered invalid.

An omission in all previous analyses of synthetic aperture radar

systems has been the determination of array length for a specified resolu-

tion in the presence of random phase errors. In the author's estimation,

this quantity is the heart of system design. It is unreasonable to build a

processor, storage facility, etc, compatible with a 4000-foot array when

(due to irreducible random phase errors) nearly the same resultant

resolution is achieved with a Z000-foot array.
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Considering the foregoing, it is worthwhile to re-attack this problem

from a new perspective. It is not anticipated that the approach in this

report is the final answer, but the results obtained from it are considered

to be of greater utility in system design.

Certain reasonable physical assumptions are made as to the character

of the system in order to obtain exact mathematical solutions. The param-

eter calculated is the expected system average power output. Exact curves

are presented to allow the system engineer to judge for himself the resultant

resolution. Since the more logical ZO- to 30-db resolution is highly sensitive

to phase errors, the results obtained using a simple and somewhat arbitrary

resolution estimate based on power response alone are not far from those

that would be calculated using an exact statistical decision theory approach.

II. ANALYSIS

A vast amount of literature is available on synthetic aperture radar

systems. No duplication or repetition of these works will be attempted in

this research report. It is assumed that the reader is thoroughly familiar

with the contents of Ref. 5 and all papers referenced therein.

This report deals only with the fully coherent focused system. A number

of assumptions are made to simplify analytical study of the system.

1) Sampling rate of the radar is sufficiently high that no angular

ambiguities appear in the data and also high enough that
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received signal spectrum splatter due to very short term

random phase fluctuations can be accommodated. This

assumption allows low-pass filtering of the coherently

detected received pulses to yield a CW Doppler history of a

target. Continuous waveforms are much easier to treat

mathematically and their use results in no loss of generality.

2) Range ambiguities for particular system geometries are

suppressed by proper signal design. No further consideration

of ambiguities will be treated.

3) Linearity of the radar system is assumed so that system

output to any arbitrary field of targets can be obtained by

voltage summation of the individual target responses.

4) A single dominant target is being viewed in each resolution

cell. M'any targets of approximately the same return

strength within one resolution cell may be approximately

handled by assuming that the system output is a Rayleigh

distribution with some mean power level. A small number

of targets of approximately equal strength in one resolution

cell can cause "break up" of the return due to cancellation

and reinforcement. This is one of the reasons for the

different appearance of optical and radar maps.

Consider now Fig. 1, which depicts the system geometry while responding

to a single point target. It is assumed that an observer at 0 fixed relative

to the real antenna watches the target, T, go by with velocity, v. Time is
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referenced to zero as indicated in the figure. The observer and his data

processor are "matched" to the geometry of Fig. 1. Any change in the true

situation from that of Fig. I due to improper target (vehicle) motion, clock

(oscillator) instabilities, or propagation-medium scintillation must

be compensated for by either a change in data processing or by accepting the

change as random error, with the resulting system degradation. This report

is concerned only with uncompensated phase errors and their effects on

angular resolution.

Let the radar at time, t, transmit the signal

Vt = Et cos Wt (1)

where Et = transmitted signal amplitude, volts

S= carrier radian frequency, rad/sec

Assuming Gaussian real antenna beam patterns, it is a simple matter

to show that the return signal from a point target is given to first order by

V = E exp (-Zkt ) cos [Wt + a + t2 + Oi(t)] (2)r r

where E = received signal amplitude, voltsr
-Z

k = beam factor, sec

w = carrier radian frequency, rad/sec

a = fixed phase shifts which may exist to and from target, e. g. ,

ZR/c plus propagation and equipment biasesi
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and I = coefficient for change in phase versus time due to quadratic
-z

range change (Fig. 1), sec

i(t) =ith ensemble member of an ergodic random Gaussian phase

process of zero mean and Gaussian correlation function, rad

It is not necessary to know the value of a as it will cancel in later calcula-

tions. The terms P and k may be computed from very simple geometric

considerations. The results are

ZTv2 -2
-R ,sec (3)

S -z
ksec (4)

where L = length at the target to the i/e (-4. 34 db) points of the real

antenna one-way power pattern, ft

v = vehicle velocity, ft/sec

X = carrier wavelength, ft

R = range to target at t = 0 (See Fig. 1), ft

For convenience, P and k are used in the following analysis to minimize

symbology.

The synthetic aperture radar system correlates the received signal,

given by Eq. (2), with a delayed in-phase and quadrature replica and pre-

sents an average power output equal to the sum of the squares of the in-phase

and quadrature correlator responses. Figure 2 depicts this process. The
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limits of integration are shown to be infinite in Fig. Z. In a real system, a

finite integration from ;-L/v to L/v would be accomplished. Since mathe-

matical tractability is sought and, further, since, with the assumed Gaussian

weighting, there is little difference in the correlator output if L/v or the

infinite limits are used, the analysis to follow uses infinite limits.

As depicted, the correlators are "matched" filters for the signal of

Eq. (2) and, as such, maximize the signal-to-noise ratio in the output for a

time shift A = 0. However, there are occasions when all the data received

from a target on its pass through the real beam cannot and should not be

processed. These situations occur when (1) processing time is precious and

resolutions corresponding to real beam length, L, are not needed, (Z) lack

of phase coherence across length, L, yields a point of diminishing returns

and processing more data gives little increase in system resolution, and

(3) vehicle constraints have forced the use of a smaller real antenna than

desirable from a resolution point of view.

As a consequence of the above, the reference functions chosen for

analysis are generalized to the following

exp [ZkkIt A)Z cos [Wt + P3(t - Z) + -] (5)

exp -Zk it J sin [cWt + P(t - • + Y] (6)

where • = (by definition) the fraction of the data utilized in processing,

0<,q< 1.
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,q, as depicted in Eq. (5) and Eq. (6) may be greater than 1 and not necessarily

restricted to the range 0 < TI <_ 1. However, in the presence of noise, the

signal-to-noise ratio at the correlator outputs will drop off for 'n > 1.7 Since

for every TI > 1 there is a TI < 1 with the same signal-to-noise ratio, it is

obvious from an engineering point of view that the range of 'q resulting in the

least data processing will always be used; ergo, 0 < n < 1.

Having dispensed with all the assumptions and system descriptions,

injection of the voltage given by Eq. (2) into the system of Fig. 2 with the

reference functions of Eq. (5) and (6) gives the following average power

output

P. = lfexp o kx + yZ + ( oO
J-cx~~J-cx, [( YL +TIJJ

X cos [ 2Ap(x - y) + 0, -) i(y)] dxdy (7)

The bar over Eq. (7) is the ensemble average over 0i. Since the average of

a sum is the sum of the averages and, further, since sin [•i(x) - Oi(y)] - 0

and Oi(x) - Oi(y) F 0, expansion of the cosine function in Eq. (7) yields

P =f Of00 [exp {1 ýzkxZ + Y2 + (x A)2 + (Y-ZA)21}

X cos [ZAP(x - y)] cos [Oi(x) - Oi(y)] dxdy (8)
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Since Oi(t) has been assumed to be Gaussian, it is recognized immediately 8

that

Cos [Oi(x) - Oi(y)] = exp j -[i(x) 2 j (9)

Simplifying Eq. (9) we get

cos [Oi(x) - O.(y)] = exp I-[R(O) - R(x - y)lj (10)

where R(x - y) = correlation function of the random phase

perturbations, radZ

Let us assume now R(x - y) is Gaussian in nature, thus

R(x - y) r Z edp Z_(1 2IT c
where a- Z = mean square value of phase error, rad 2

T c = time it takes the correlation function of phase to drop toc

1/e of its zero argument value, jec

Substituting Eq. (11) into Eq. (10) and Eq. (10) into Eq. (8), we finally

obtain

-lZ-



C
2r r~r F f F2/ z / ;]Z

P= exp (-(r )ggf Coexp j 2 k xZ+y' I+ -A~)+ Y

+ exp - X cos [ZAP(x - y)] dxdy (12)

Our task now is to evaluate the interesting integral of Eq. (1Z). Expand-

ing the exp Ia-T exp -(x - y) /T] term in an infinite series, which is valid

for all values of the exponent, Eq. (1Z) becomes

P0 = exp (-TZ) 2 4f exp {Zk [xZ2+Y2+(x -A)2+(Xy A)]
j=0 j-! 'TI

j(x - y) z

-T-Z}J cos [ZAP(x - y)] dxdy (13)
T c I

Expanding the exponent in Eq. (13) and performing the excruciating

double integration with the help of integral tables9 give the following exact

result for P 0

S2 Zj exp -4 + -{ + 4 elf) (}TI (
(ýO)~ xeff/f 2 1

Pexp (-T Z)E (14)

j= 1/
j! 1+ . '

4(c

eff
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where P normalized system power response

x = distance along vehicle track, ft

x0 = (Z/1T)(XR)/Leff, - 4. 34db (I/e) synthetic aperture

response width, under no phase-error conditions, ft

Leff= L(1 + I/Z

L eff = L 2 , by definition,the effective synthetic

aperture length, ft

Xc = VTc, the distance to 1/e point of the phase error

correlation function, ft

Tj = (by definition) the fraction of available data processed.

See Eq. (5) and Eq. (6).

Two key quantities defined above bear repeating as Eq. (15) and

Eq. (16).1O

XO = , ft (15)

L ff L(2), ft (16)+ 1 /,q

Note that, for small il, Eq. (14) reduces identically to the two-way power

pattern of the real beam. This is expected since, for small -q, little proc-

essing of the received data is performed.
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For the case of considerable beam sharpening, xo/L eff - , the exact

equation, Eq. (14), reduces to

3'2j ex -ll20 x
P eexp (-r.) 1/ ] (17)

jý1+ I_ /X\

41 c I

Note that in Eq. (17) the power response of the system depends only on

(1) a-, the rms magnitude of the random phase error, (2) xc/Leff, the ratio

of the correlation distance of phase errors to effective array length, and

(3) x/x 0 , the normalized distance from maximum output. Note also, as

Xc/L eff - o (complete correlation across the array), Eq. (17) becomes

exp [~ ~~2](18)

and is completely uninfluenced by the rms magnitude of the phase error.

This is expected. Equation (18) demonstrates the significance of x 0 as the

width to the 1/e (-4. 34 db) power response with no phase error.

Figures 3(a) - (n) are plots of Eq. (17) for various values of x /L

and a-. Neglect of the last term in Eq. (14) for the parameters chosen yields
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an overestimate of"sidelobe" power of ;0. 1 db at x/x 0 = 5 and

exponentially less error for smaller x/x 0 .

Figures 4(a) - (e) are interesting and can assist in assessing the effective

array length one should use in the presence of phase errors to achieve a

specified 20 db synthetic beamwidth. These curves are normalized and can

be used for any range R or system wavelength X. For the special case of

R = R0 = 1.8 x 106, ft, and X = X0 = 0. 1, ft, the 20 db half-beamwidth

appears directly as the ordinate.

Note the rapid expansion with phase error of the 20-db beamwidth as

contrasted to the 3-db beamwidth. A reasonable definition of resolution is

the half-beamwidth to the point equal in decibels to the dynamic range of the

system. For N strong targets in the vicinity and for short phase-error

correlation distances, it is suggested that a safety factor of 10 logl 0 (N)

be added to the dynamic range [see Fig. 3(a)]. It is felt that this is a

good engineering criterion considering (1) the sensitivity of the dynamic-range

beamwidth to a and x, and, (2) the lack of precise knowledge of a and x .

III. CONCLUSIONS

For the first time, reasonable assumptions regarding the physical

system and random phase errors have yielded an exact result that predicts

the expected power response for a synthetic aperture radar system.

Complete freedom to choose the fraction of the received data to be proc-

essed has been left to the system designer by his choice of '1.
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The assumed Gaussian weighting not only yielded a mathematically trac-

table systembut, in addition, gave an expected response with no sidelobes.

The definition of resolution suggested by the author is the half-beamwidth

to the dynamic range point on the expected power response curve. A. figure

of 20 db was chosen for illustration in Fig. 4(a) - (e). The definition of reso-

lution as the dynamic-range half -beamwidth is consistent with (1) the high

sensitivity of resolution to 0- and xc and (2) the inaccurate knowledge of

these parameters.

It is felt that an exact decision theory attack on this problem would not

be fruitful because of its mathematical formidability and the inaccurate

available data on a- and xc.c

Equations (11) and (12) indicate that multiple sources of error with

different correlation intervals make explicit solution of the integral equation

for system power response a formidable undertaking. In this situation, a

reasonable approach is to evaluate the system power response separately

for each error, If one of the errors is clearly dominant, it may be regarded

as bounding achievable performance.
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